Ļć½¶Ö±²„

Abstract image of acoustic waves. Source: Shutterstock
News_

Light, sound, action: extending the life of acoustic waves on microchips

7 May 2020
Research opens door to low-heat, low-energy, fast internet
Microchips without electrons will allow for the invention of data processing systems that don't overheat, have low energy costs and reduce greenhouse gas emissions. This foundational work will help scientists invent systems to achieve those aims.
Authors Dr Birgit Stiller (left) and Dr Moritz Merklein in the Sydney Nanoscience Hub labs.

Authors Dr Birgit Stiller (left) and Dr Moritz Merklein in the Sydney Nanoscience Hub labs.

Scientists in Australia and Europe have taken an important step towards removing ā€˜hot’ electrons from the data chips that are a driving force in global telecommunications.

Researchers from the University of Sydney Nano Institute and say that chips using light and sound, rather than electricity, will be important for the development of future tech, such as high-speed internet as well as radar and sensor technology. This will require the low-heat, fast transmission of information.

ā€œAs demand for high bandwidth information systems increase, we want to get ahead of the curve to ensure we can invent devices that don’t overheat, have low energy costs and reduce the emission of greenhouse gases,ā€ said from the in the School of Physics and Sydney Nano.

The idea is to use sound waves, known as phonons, to store and transfer information that chips receive from fibre-optic cables. This allows the chips to operate without needing electrons, which produce heat. The team was the first in the world to successfully manage this process on chip.

However, information transferred from fibre-optic cables onto chips in the form of sound waves decays in nanoseconds, which is not long enough to do anything useful.

ā€œWhat we have done is use carefully timed synchronised pulses of light to reinforce the sound waves on-chip,ā€ said , who has moved from the University of Sydney to lead an at the Max Planck Institute for the Science of Light in Germany.

Dr Birgit Stiller.

Dr Birgit Stiller.

ā€œWe have shown for the first time that refreshing these phonons is possible and that information can therefore be stored and processed for a much longer time,ā€ she said.

The scientists carefully timed pulses of light to extend the lifetime of the information stored in sound waves on the chip by 300 percent, from 10 nanoseconds to 40 nanoseconds.

The research, published in the journalĀ , was done in collaboration with theĀ Ā at the Australian National University and theĀ Ā at the University of Southern Denmark.

ā€œWe plan to use this method to extend how long the information remains on-chip,ā€ said Dr Merklein, also from theĀ Institute of Photonics and Optical ScienceĀ at the University of Sydney.

Dr Stiller said: ā€œAcoustic waves on chips are a promising way to store and transfer information.

ā€œSo far, such storage was fundamentally limited by the lifetime of the sound waves. Refreshing the acoustic waves allows us to overcome this constraint.ā€

, a project collaborator from the University of Southern Denmark, said: ā€œTheoretically, this concept can be extended to the microsecond regime.ā€

This proof-of-principle demonstration opens many possibilities for optical signal processing, fine filtering, high-precision sensing and telecommunications.

Declaration

This research was supported by the Australian Research Council (CE110001010, FL120100029); and the European Union H2020 Marie Skłodowska-Curie Actions (713694).

Marcus Strom

Science Media Adviser